Sunday, 19 January 2025

UGC NET COMPUTER SCIENCE AND APPLICATIONS PAPER - 2 Question 2 November 2017 Solution

Q: 2 Let m=(313)4 and n=(322)4 . Find the base 4 expansion of m+n.

(1) (635)4

(2) (32312)4

(3) (21323)4

(4) (1301)4

Answer: (4)

Explanation:


Firstly convert m & n into base 10:

(313)4 = 3*42+1*41+3*40 = (55)10
(322)4 = 3*42+2*41+2*40
 = (58)10

Now m + n = 55+58 = (113)10

Now Convert (113)10 into base 4

  • When 113 is divided by 4, the quotient is 28 and the remainder is 1.
  • When 28 is divided by 4, the quotient is 7 and the remainder is 0.
  • When 7 is divided by 4, the quotient is 1 and the remainder is 3.
  • When 1 is divided by 4, the quotient is 0 and the remainder is 1.

Write the remainders from bottom to top.

So, (113)10 = (1301)4      which is Correct.

No comments:

Post a Comment